
by MICHELE SLIGER

Agile Projects in the Waterfall Enterprise

26 BETTER SOFTWARE JULY/AUGUST 2006 www.StickyMinds.com

Although agile software development methodologies have
been around for almost a decade, interest in agile approaches has
exploded recently as companies seek better ways to compete
with their global counterparts by getting their software products to
market more quickly. The economy’s downturn and subsequent
budget cuts have led to greater interest in how to do things faster
and how to do more with less. As a result, agile methodologies—
Scrum, Extreme Programming, Lean Software Development,
Crystal, Dynamic Systems Development Method, Adaptive
Software Development, and others—have attracted many CIOs
who are looking for approaches to make product
development faster, more reliable, and more satisfying to
the end-user.

www.StickyMinds.com JULY/AUGUST 2006 BETTER SOFTWARE 27

While these promises are enticing, most
agile methodologies are designed for
small, collocated, collaborative teams.
Knowing these constraints—yet still
feeling a need to respond rapidly to
market pressures—companies with
large and geographically dispersed IT
divisions have chosen to forge ahead,
making changes when necessary, to adopt
agile methodologies within their large,
historically waterfall-oriented organiza-
tions. Because it’s simply impractical to
“flip a switch” and have a 1,000-person
IT department start doing agile all at once,
these organizations must wade through a
sometimes murky transition period when
agile and waterfall are forced to coexist.

During such a transition, what’s an IT
enterprise to do? Agile and waterfall are
so utterly different—from the way projects
start (diving right into coding vs. spending
long weeks in analysis and design) to the
types of meetings held (quick, daily
planning meetings vs. long, weekly status
meetings), to what we expect of the team
(self-organized vs. directed), and even the

The Agile-Waterfall
Cooperative

Large companies have clear, valid
reasons for requiring certain waterfall
activities on otherwise agile projects.
Project approval processes designed to
weigh benefits, costs, and strategic
alignment with corporate objectives are
one example of a standard waterfall-
up-front requirement. Independent
Validation and Verification (IV&V) is a
waterfall-at-end requirement for those
companies in industries that must comply
with external regulations. And waterfall-
in-tandem occurs when the system under
development is so large and complex that
multiple teams, often working on different
platforms, must work together to prepare
a release.

None of these requirements will cease
to exist simply because the teams are
employing agile practices. Instead the teams
must learn to factor these corporate
needs into their agile procedures, and
management must begin the investigative
work of determining how to streamline
these requirements and activities so they
don’t hamper the project.

Waterfall-up-front
I counseled one team to use Alistair

Cockburn’s “barely sufficient” philosophy
(see the Sticky Notes for more informa-
tion), in order to avoid doing more than
was absolutely necessary when faced
with waterfall-associated deliverables.
The team members had been newly
christened as an agile pilot team when
they found that they still had to go
through the standard waterfall project
approval process to obtain the necessary
resources and funding.

Using the “barely sufficient” guideline,
the team asked, “Is this something that
we really must do? And if it is, then what
is the simplest thing we can do to satisfy
the approval process?” Project approval
was a must for the team, because with-
out approval the project team would be
disbanded and the monies and staff
would go to other, previously approved
projects. But conversations with the
financial controllers revealed that the
documentation required for the
approval process could be streamlined
and simplified, thus saving the team

expected deliverables (chunks of working
code early and often vs. documentation
early with code at the end). These two
practices have different ways of measuring
progress, determining success, managing
teams, organizing, and communicating.
How can they be managed as part of a
cohesive project portfolio? Can agile and
waterfall methodologies coexist and still
make the company successful?

The answer is yes. Not only can they
coexist for the interim but they can
coexist for the long term, since not all
companies will choose to move every
software development project to an agile
paradigm. The trick is in how they can
coexist peacefully and not detract from
operational stability and continued project
success. Every transitional environment,
agile or otherwise, has to deal with duality
until the transition is complete. Doing
this with the least amount of pain and
disruption means tightly embracing one of
the key agile tenets: “inspect and adapt.”
Process reviews and the progress the teams
have made at the end of every iteration
(typically one to four weeks in length)
guide decisions on how best to proceed
in the next iteration. This allows teams to
adjust some of the agile practices to work
better in the current environment, knowing
that these agile practices may change and
become more “pure” as the environment
and culture change over time.

Some agile purists will say that by
stretching the process it’s no longer
truly “agile,” and in many cases they
may be right. Semantics aside, it’s still
about improving the overall software
delivery system, and the label we apply
to the methodology is secondary. However,
teams must be careful not to stretch agile
practices so much that the teams revert
to their more comfortable, waterfall
habits. When agile is viewed as an à la
carte menu of practices that can be
adopted as the teams see fit, it’s
critical to adhere to a diet of key
principles—continuous improvement
through time-boxed iterative deliveries
and reviews, implementation of the
most important items first, and constant
collaborative communication. As they
begin their transition, teams following
these principles will find ways to
integrate agile and waterfall.

28 BETTER SOFTWARE JULY/AUGUST 2006 www.StickyMinds.com

Using the “barely
sufficient” guideline,
the team asked,

“Is this something

that we really must

do? And if

it is, then what

is the simplest thing

we can do

to satisfy the

approval process?”

from having to do the big up-front design
that goes against the agile philosophy.

Based on the agreement reached with
the financial managers, team members
did the “barely sufficient” analysis
and design work required to produce a
technical specification document, which
they submitted with their business case
for approval. The design specification
was a high-level overview of the system
with high-level functional specifications,
but it avoided the detailed requirements
that would have taken the team weeks to
complete. The documents were considered
just good enough for the review process,

and the project was approved.
Once they had approval, team members

held their first iteration planning meeting
and brought along the specification that
they had created. From the thirteen-page
document they extracted a total of twelve
sentences that represented the first few
features they wanted to develop and then
used this information as their initial
product backlog.

They set aside the specification and
rarely referenced it during the course of the
release. The creation of this specification
was not, however, viewed as a waste of
time. Rather, team members felt they had
benefited from the shared product vision
created from the exercise of compiling the
specification. And of course, the financial
managers on the project approval board
got the information they needed to
determine capitalization (some companies
require a technical specification before
deciding whether a project’s budget can be
labeled as capital or expense) and thus

waterfall at the end of each project in order
to prepare the software for production.

Passing through the required phase-
gate of the team’s production department
means that all documentation, meetings,
end-to-end system testing and compatibility
testing, and sign-offs must be planned and
carried out. The team decided to use
story cards to represent each item on the
production checklist and allocated an
entire iteration to production readiness.
Team members did not implement any
new features during this iteration; instead
they produced documentation for
production, customer support, the
architecture review committee, and
systems test. (Note: This company’s system
test was concerned primarily with the
submitted application’s compatibility
with other existing applications on the
network—the agile team still tested its
code in each iteration.)

Figure 2 illustrates this example. If
team members had any time left in this
iteration, they spent it refactoring code,
installing development and test
system upgrades, investigating new
technologies, and training staff.

An iteration dedicated to preparing
the passage of potentially shippable code
base to another entity is useful in a wide
variety of situations: Sarbanes-Oxley
auditing, FDA approvals, and IV&V.
Even if your product does not need outside
approval, you can use this hardening
iteration to capture final screen shots for
marketing and training materials, finalize
the release notes, conduct performance
and load testing, and other organizational
activities. Just be sure that your team
isn’t using this last iteration solely as a

approved the project.
Other teams with which I’ve worked

received provisional funding prior to official
approval, so they included the project
approval requirements in their first two
iterations as deliverables along with
requested features. You can see an example
of both approaches in Figure 1.

Don’t be afraid to put non-product
items in the backlog, especially if you
want to take advantage of the high
visibility it affords. Ken Schwaber, author
of Agile Project Management with Scrum,
calls the list of project initiation work
items the “Scrum Startup Backlog.”

Waterfall-at-end
Another agile team I know of in a

large telecommunications firm discovered
that having to deal with waterfall-at-
end requirements meant adding an
extra iteration to prepare the required
deliverables. This team produces
application software for internal
end-users, and it must switch from agile to

www.StickyMinds.com JULY/AUGUST 2006 BETTER SOFTWARE 29

1 noitaretI

esaeleR

golkcaB

lavorppA tcejorP •
1 erutaeF •
2 erutaeF •

lavorppA .hcrA •
3erutaeF •

tcejorP •
lavorppA
1 erutaeF •

2 erutaeF •
.hcrA •

lavorppA

3 erutaeF •
4 erutaeF •
5 erutaeF •

6 erutaeF •
7 erutaeF •

tcejorP

lavorppA

ssecorP
oT

remotsuC

4 noitaretI3 noitaretI2 noitaretI

Figure 1:Waterfall-up-front

e s a e l e R

1 e r u t a e F •
2 e r u t a e F •

3 e r u t a e F •
4 e r u t a e F •

5 e r u t a e F •
6 e r u t a e F •
7 e r u t a e F •

n o i t c u d o r P •
s t n e m u c o d
w e i v e r . h c r A •

p l e H n i a r T •
k s e D

V&VI/noitcudorP

o T

r e m o t s u C

3 n o i t a r e t I 2 n o i t a r e t I 1 n o i t a r e t I 4 n o i t a r e t I

Figure 2:Waterfall-at-end

bug-fixing opportunity; that’s a signal
that the team is committing to more features
in each iteration than it has time to test.

Waterfall-in-tandem
A healthcare management company

with which I’m currently working has
multiple complex systems—systems so
large they must be broken down into
components, with each component having
its own project teams. Data flows from
legacy minis and mainframes to newer,
browser-based applications and then
back again—and sometimes even on
to something else—resulting in huge
coordination efforts to ensure successful
system integration.

One of the component teams was
piloting agile and realized that in order to
coordinate milestone deliverables with
the other teams they would have to

include the waterfall project managers in
the planning sessions. This realization
came after attempts to stay synced up via
emails failed horribly. The agile team
members realized they had left the
“collaborative” out of the “constant
collaborative communication” principle
(sorry, constant emailing doesn’t count!),
and so began inviting the waterfall project
managers to all their planning meetings—
release planning, iteration planning, and
daily stand-ups. Initially the waterfall
project managers grumbled that all these
planning sessions were wreaking havoc
on their calendars. However, once they
had attended a few sessions, the managers
began to realize the value of the shared
information and the improved ease and
coordination of the work.

Although this approach was more

company-sanctioned style sheets. Instead
the agile team members created a simple
UI that was functional and scalable,
albeit not particularly attractive. At the
end of the first release, the product was
deployed internally with the agile team’s
UI. By the next release the waterfall team
had delivered, and the official screens
became part of that second release. In the
meantime, the end-users had access to
the needed functionality, and the agile
team was praised for its efforts.

The Anomaly—Two
Separate Entities

I’m aware of one organization that
has decided to keep the agile and waterfall
groups completely separate, with no
overlap at all. This particular company
set up its agile teams as a separate
organizational unit, and its internal
clients pay the department for the use of
its agile teams for a fixed period of time
(not for a set project).

These agile teams function as a type
of “skunk works” operation (see the
StickyNotes for more information).
Copyrighted by Lockheed Martin, the
“skunk works” phrase was created by a
1943 Burbank, California, team that
had been tasked with creating the
P-80 jet fighter from scratch. Clarence
“Kelly” Johnson, who headed the team,
described a skunk works operation as “a
small group of experts who drop out of
the mainstream company operations in
order to develop some experimental
technology or new application in secrecy
or at speed, unhampered by bureaucracy
or the strict application of regulations.”
These stealth agile teams evade waterfall
controls thanks to the power of their ex-
ecutive sponsors and their paying clients,
who work together to protect and incu-
bate the teams so they can focus on their
assignments. And by keeping the two
separate, management avoids dealing
with the issues surrounding changes
needed in organizational structure, project

successful than email, overseeing multiple
teams was still difficult for the waterfall
managers. So, after another iteration
review, the process was modified again to
include other key members of the waterfall
teams in addition to the waterfall project
managers. All the teams eventually came
together for release planning meetings,
with a smaller set of waterfall team
representatives attending iteration planning
meetings when needed (see Figure 3). A
second tier of daily stand-ups was added
for the team leaders, as in the Ken
Schwaber “Scrum-of-Scrums” model.
For more information on how these
meetings work, see the StickyNotes for a
link to a nicely articulated definition and
graphic by Mike Cohn. These teams,
waterfall and agile, used the iteration
reviews to inspect and adapt and thus
created their own natural transition plan.

Don’t be surprised, however, to find
your agile teams moving ahead of those
waterfall teams that aren’t inclined to co-
operate or are unable to deliver. Agile
teams usually figure out a way to keep
making progress, even without the
expected deliverables on which they rely.
The agile team will stub out that missing
subsystem and create work-arounds, or they
will simply build the module themselves.

In one instance, agile team members
decided not to wait for the waterfall user
interface (UI) design team to provide the

30 BETTER SOFTWARE JULY/AUGUST 2006 www.StickyMinds.com

e s a e l e R

m a e T

e l i g A

t s e T … e d o C … n g i s e D … s i s y l a n A
m a e T

l l a f r e t a W

s t n i o P c n y S d n a s e n o t s e l i M

o T

r e m o t s u C

4 n o i t a r e t I 3 n o i t a r e t I 2 n o i t a r e t I 1 n o i t a r e t I

Figure 3:Waterfall-in-tandem

Don’t be surprised, however, to find your agile teams
moving ahead of those waterfall teams who aren’t
inclined to cooperate or are unable to deliver.

approval procedures, ongoing portfolio
metrics and management, and overall
culture that must be addressed in an
agile-waterfall cooperative.

Making changes—especially of this
magnitude—is never easy. But most teams
have told me that the hardest part is just
getting started. Once teams begin
adopting some of the practices, they find
the rewards surprising and well worth the
continued effort. Organizations find that
being able to better respond to the
marketplace isn’t the only reason to
switch to agile. The cooperative and
collaborative nature of the approach
provides a more supportive, meaningful,
and exciting work environment for the
members of the team. Agile is a
commonsense approach to software
development, and the success of a
waterfall-agile enterprise lies in creating
a transition plan to excellence through
the cycle of inspection, adaptation, and
execution. {end}

Michele Sliger has worked in software
development for more than fifteen
years. She currently works as an
agile consultant for Rally Software
Development, where she trains software
development teams in agile methodologies.
Previously a project manager at Qwest
Communications and a consultant for
Fortune 500 companies, Michele was a
founding member of the engineering
teams at two biotech start-ups. She is a
certified Project Management Professional
and a Certified Scrum Master. Michele is
also an adjunct faculty member of the
University of Colorado, where she
teaches software project management to
graduate engineering students. Email
Michele at msliger@rallydev.com.

www.StickyMinds.com JULY/AUGUST 2006 BETTER SOFTWARE 31

Sticky
Notes

For more on the following topics, go to
www.StickyMinds.com/bettersoftware

� Alistair Cockburn’s Barely Sufficient
methodology

� Mike Cohn on daily stand-up
meetings

� More on “skunk works”
� Further reading

The KEY TO SUCCESS in each of
these examples is the teams’ approach
to transition problems—solving problems
collectively, collaboratively, and with the
freedom to make decisions and changes
within the discipline of regular reviews.
Here are several recommendations to help
your organization develop ways for agile
and waterfall to effectively coexist:

� Talk with waterfall stakeholders about how you’d like to work together.
Answer their questions about agile, and ask for their help in making the
relationship as pain-free as possible. The executive sponsor should be
part of the initial discussion, to share her commitment to the process,
her dedication to removing roadblocks, and the importance of each
team’s involvement.

� The waterfall requirements of the project should become stories in
the agile team’s backlog. Include waterfall stakeholders in the agile
planning meetings, so that everyone understands what qualifies as
barely sufficient deliverables, what assumptions the teams are making,
and what dependencies exist.

� In the review and retrospective held at the end of each iteration,
analyze the benefits and challenges you’ve just experienced and make
recommendations on how to improve the experience in the next itera-
tion. Again, be sure to include the waterfall stakeholders.

� Executive and middle management should create their own prioritized
backlog of transition issues they need to focus on, implementing corporate
process and organizational change iteratively and incrementally.

� Don’t try to fix everything before you start agile adoption. Just dive right
in—you’ll find a way to work within the current constraints. Use the
iteration reviews and retrospectives to make change recommendations
and implement incremental improvements as you go. Be reasonable
about this by focusing on only the top two or three things for the next
iteration. It’s a backlog of recommendations and, like the backlog of
product features, they all can’t be implemented at once.

� Pay attention to behaviors and avoid reverting to old habits. For example,
if you notice that you’re depending on the specification that you had to
create in the waterfall-up-front iteration instead of having discussions
with the product owner, set the document aside.

� Invite all stakeholders to participate in a project retrospective at the
end. These meetings are crucial to help identify and implement broader
transition changes that affect the entire enterprise.

