
What You Need to Know
About Software Testing
in the Agile Era

http://www.qasymphony.com

1. Reimagining the Tester
 for the Agile Age
 (Vu Lam)

2. Finding the Right Mix With
Your Testing Methods

 (Sellers Smith)

3. Surprising Truth About
Exploratory Testing

 (Vu Lam)

4. Building Good Tests:
 Why, What, How?
 (Sellers Smith)

Chapters:About the Authors

Vu Lam is CEO of QASymphony, a leading
developer of Quality Management solutions
for software developers and QA testers. He
was previously with First Consulting Group
and was an early pioneer in Vietnam’s
offshore IT services industry since 1995.

An entrepreneur at heart, he started multiple technology
ventures, including Paragon Solutions, a technology
consulting company with international development centers
in Bangalore, India, and Ho Chi Minh City, Vietnam. Following
Paragon’s acquisition by NASDAQ traded FCG, he led the
growth of the organization from 400 to 1300 resources. In 2011,
he co-founded QASymphony, a vendor of software testing
tools, with Josh Lieberman. He holds a MS degree in electrical
engineering from Purdue University. You may reach him at
vulam@qasymphony.com.

Sellers Smith is Dir. Quality Assurance &
Agile Evangelist for Silverpop of Atlanta,
GA, a digital marketing technology provider
that unifies marketing automation, email,
mobile, and social for more than 5,000
global brands. Prior to Silverpop, he led

technical implementation of new Internet business initiatives
for WebMD, ForestExpress.com, and the e-commerce
site for NASCAR.com and GameTap.com. He has held
software engineering positions at Turner Broadcasting, A.G.
Edwards & Sons, and MITRE. Currently, Sellers is leading
the implementation of Agile Testing practices including
Acceptance Test Driven Development, Specification by
Example, Test Automation using FitNesse and Exploratory
Testing. He has a MS degree in Software Systems Engineering
from George Mason University and a MBA in Information
Systems from Rensselaer Polytechnic Institute. You may
reach him at sellers.smith@gmail.com.

mailto:vulam@qasymphony.com
mailto:sellers.smith@gmail.com

Introduction

The testing industry is undergoing some rapid and
far-reaching changes driven by major shifts in the
software development landscape. Software is moving
from concept to end user faster than ever before and this
throws up a whole new set of challenges for testers. The
traditional procedures and techniques that have served
QA departments in the past are no longer up to the job.
The techniques and tools required for effectively testing
modern software has evolved way beyond the traditional
plan test – write test – run test model of yesteryear.

In this eBook we bring together the thoughts of a vendor
-- intent on building something that truly speaks to the
needs of the modern tester -- with a practitioner from
the testing trenches, to bring you a multidimensional
perspective on the issues testers are facing and how they
might be mastered.

We begin with a chapter on reimagining the tester for
Agile. The Agile mindset has transformed how software
is developed, but QA departments have been slow to
adapt their own methodology. Testers are uniquely
placed to serve as advocates for the end user. Testing
practices must be modernized; testers have to be in the
development loop to gain the insight they need to test
effectively, and realistic planning is paramount.

Our next chapter explores how testers need to identify
the right balance of testing methods if they are to
establish a comprehensive testing strategy. We discuss
automated, exploratory, and user-acceptance testing,
with advice on when to employ them and how to get the
best from each approach.

In the third chapter we drill down into exploratory
testing and analyze its origins to uncover its essence.
The time pressures of modern development make it
an indispensable technique. Continuous deployment
and the fast feedback loop which drives new features,
necessitates a flexibility and focus that can be found
through exploratory testing.

The final chapter focuses on the practical side of
building good tests by breaking the process down into
a deceptively simple trio of questions: why, what, and
how? By applying these queries testers can identify the
value of individual tests to ensure that maximum value
is extracted from each new test cycle. This ability to
continually reassess and refocus effort in the right places
is the key to delivering for the business.

QA departments are often left to their own devices.
Excluded from exciting new developments and last
to the table for budgetary consideration, testers are
being squeezed to deliver more with less. The testing
community has to get more active and vocal about the
challenges facing them. A love of the craft and real
dedication is the first step towards challenging that
underappreciated status.

We offer this eBook in the spirit of opening a dialogue.
The ultimate hope, which we’ll delve into in more
depth in our conclusion, is that the testing craft can be
professionalized further. Good testers have key skills
and expert knowledge that’s in serious demand. By
adapting to seismic shifts in the wider software industry,
developing new approaches, and finding new tools,
testers can stay relevant and effective.

# 

http://www.qasymphony.com

Dangerous Assumptions
It should be obvious that Agile
development completely disrupts
traditional testing practices,
yet many companies have done
nothing to update processes or
arm testers for the new challenges
they are facing.

Imagine a typical scenario on an
Agile project with a team of five
developers, and a pair of testers.
From the development point of
view, five developers can work
at a steady, measurable velocity,
adding new features to each new
build. But that simply isn’t true
for testers.

At first, testing each sprint is not
a problem, because testers have a
limited number of features to test,
but as the software grows they
have to test new features, verify
bug fixes, and perform regression
testing. Everything has to be
tested within the sprint timeline;
the shorter it is, the more rounds
of regression testing is called
for. Soon, the test team is bogged
down and overloaded.

Automated Unit Tests developed
alongside with the code helps to
relieve some of the pressure, but
the workload for the testers still
remains high. How can the same

“The ideal tester is an advocate for the end user.”

Reimagining the Tester
for the Agile Age

It’s been 12 years since the Agile Manifesto was created, and the majority of
developers have jumped on the bandwagon since then. Agile methodologies are
now dominating the software development landscape. It has overtaken Waterfall
as the dominant approach. But in the rush to implement the Agile mindset,
something has been overlooked – the tester.

The focus on delivering a good product without endless documentation is
undoubtedly a positive move for developers. By keeping the needs of the end user
in sight at all times, and creating feedback loops, projects generally deliver better
software, and faster than before. Given that the Agile method was conceived by
developers for developers, it left the testers in the dark. As a report from Forrester
points out, Agile teams must invite testers to the table.

Vu Lam

CHAPTER 1

http://www.forrester.com/Consistent+Performance+In+Agile+Teams+Must+Include+Testing/fulltext/-/E-RES87681

QA Symphony | Reimagining the Tester for the Agile Age | Page 5

two testers cover all the new
features alongside fix verification
and regression testing? The
answer is simple: they can’t.

A New Approach
In order to ensure that the quality
remains high, management
could scale up the test team
significantly as the development
progresses, but there is a much
more cost-effective solution.
Regression testing has to be
documented and then automated
as you progress. There’s no way
to write up these test cases or
scripts before the code has
been delivered.

New feature testing and bug
validation is where you
want your testers to focus.
You can avoid duplicating
work by using the test flow
they are capturing as they
test to generate test cases
that can be used to automate
the regression testing for
the next build. It’s an all-at-once
approach that requires testers to
be on their toes.

A New Tester
For Agile testing to work, testers
need to adopt the same Agile
mindset as developers, but
ditching the traditional waterfall
process for sprints does require
some upfront planning.

Previously, the testers’
routine involved reading and
understanding requirements,
writing test cases before the
build arrived, and testing the
software when the build was
made available. For the Agile
project, the tester cannot afford
to write test cases before the build
arrives since there’s not enough
detail available.

There has to be a change in
routine: leverage Exploratory
testing to put new functionality
through its paces, write a limited
set of core test cases for future
regression testing, and automate
them as soon as the software in
that area is stable to reduce a
manual testing burden.

In the absence of detailed
requirements and documentation,
Agile testers must understand
the needs of the end user. It is
vital they can put themselves

in the end user’s shoes and have
a good understanding of exactly
what they need from the software
and how they are likely to use it.
This means full participation in
Scrum meetings, absorbing user
stories, and asking questions
whenever something isn’t clear.
The ideal tester is an advocate
for the end user.

For Every Nail There’s A Hammer
Looking beyond the mindset, Agile
testers need the right tools for
the job. The vast majority of Agile
project management software
ignores the vital role of the tester.
Test management solutions were
created to support more traditional
testing. In short, project and
testing software have not caught
up with the unique demands of the
modern Agile tester.

They need tools to support the way
they explore and test software in a
fluid, unscripted manner. It should
be fast and easy to identify and
document test cases for regression
and possible automation. They
also need a test management tool
that fully supports all the Agile
tester’s tasks, not a tagged-on
module to the development team’s
project management software.
Something dedicated that can
link user stories and test cases,
import and export bugs, and keep
a complete record of the testing
that has been completed and what
the results were. Something that’s
truly built for the Agile tester.

Time For Agile Testers
So much effort has been put
into creating Agile practices and
tools for developers, isn’t it about
time that testers were given due
attention? For all the good that
Agile development brings, it doesn’t
dispense with the need for skilled
testing if you fully expect to deliver
an excellent product for users.

Integrate testers into the Agile
process from the start, equip them
with the right tools to help them
develop exploratory skills and
use automation to cope with the
repetition of regression testing,
and you have yourself a tester for
the Agile age.

#

Automated Testing
The testing of every product
will start with some scripted,
automated tests that are designed
to exercise the system and
validate that it works the way it is
supposed to. Automated tests are
repeatable, fast, and they can be
run as many times as needed.

To give an example, if you were to
test an e-commerce shopping cart,
you might have an automated test
that tries to add each individual
item in your store and check out
successfully. Does the cart add
up the combined cost correctly?
Is it possible to add each item?

Can you successfully complete
the checkout process?

These are all useful things
to know, but there are some
obvious limitations. Automated
tests cannot go beyond their
original scope. The lack of
human involvement means that
an automated test may run and
successfully add items and then
check out, but it wouldn’t pick up
on things like misspelled item
names or stretched photos. If it
wasn’t included as a parameter
when the automated test was
written, then it won’t be picked
up when it runs.

Finding the Right Mix with
Your Testing Methods

Any comprehensive testing strategy is going to rely on the right mix of tests for
the product. There are various methodologies that can be employed, but rather
than viewing them as separate, discrete approaches, it is worth remembering that
they all lie on a common continuum. At one end we have mechanistic automated
testing, and we pass through scripting, beyond exploratory testing, and on to
private and public betas at the opposite end.

The testing journey starts from a tightly controlled base and winds its way towards
real world conditions. We’re going to focus on three important stops along the way
in this article and explain a little about how they bring value to the process, what
their weaknesses are, and how you decide when to use them.

With the right balance of automated, exploratory, and user-acceptance
testing, QA teams can help build great products.

Sellers Smith

CHAPTER 2

QA Symphony | Finding the Right Mix with your Testing Methods | Page 7

Exploratory Testing
With any piece of software you
can use documentation, user
stories, and conversations with
key stakeholders to determine
how a system should work. There
are certain concrete rules to how
the software should behave and
automated or scripted testing can
cater for those, but what happens
when someone goes off script?
Exploratory testing is about
combining your knowledge and
experience as a tester with an
understanding of what the product
is supposed to do to uncover
potential problems that automated
tests will not catch.

It goes beyond ad hoc testing,
because there has to be a clear
area of focus and a predetermined
scope, but the tester is not bound
by a check-list approach. They
can delve into how the experience
feels, unusual scenarios that
may have been missed by the
developers, and leverage specialist
knowledge related to the domain
or industry that the software is
aimed at. Using our shopping
cart analogy again they might
add and then remove products
from the cart, test how it deals
with multiples, and see if they
can exploit the system to produce
negative values and checkout with
a refund.

User-Acceptance Testing
There is ultimately no substitute
for real world conditions. You
can test a product professionally
for months on end, but as soon
as you release it into the wild
your end users will do a variety
of unexpected things with it.
Whether you opt for a private beta,
which involves inviting some of
your prospective customers to
use the software, or you open it
up publicly and work fast to meet
expectations, you need to collect

this feedback before your product
can truly be finished.

End users will always come up
with scenarios that development
and QA didn’t consider. With
the shopping cart, they might
fill it up and then come back a
week later with the expectation
that their shopping items will
still be waiting for checkout.
Unencumbered by knowledge of
the documentation, and not biased
by proximity to the project, end
users will try unusual things that
seem intuitive to them. That can
be great for discovering defects,
but it also teaches you a lot
about expectations. This is how
your product will be used in the
real world.

Bringing It All Together
The exact mix of tests will vary
depending on the type of system
and users. Generally, systems with
heavy business logic are going to
favor more test automation (e.g.,
verification of business rules),
while consumer-facing systems
will favor more beta testing.

As an example, Silverpop
provides marketing automation
and email marketing in a SaaS
model. The company focuses on
a larger automation test suite,
and does exploratory testing in
order to test complex usage of its
application. Silverpop has several
mechanisms, things like feature
switches and pilot environments
-- to support beta users and
early adopters.

A good approach is to focus on
automated tests (or scripted tests),
until you have a generally usable
platform. Exploratory testing is of
limited use if the basic features
are not working. Once exploratory
testing is underway, you can focus
on introducing beta user or early

adopters. Feedback from beta
users is of limited value if primary
usage scenarios are not working.
This approach can be used
iteratively around release and or
features (for folks doing feature-
based development).

In short, start with a well-defined
set of automated tests to validate
core business functionality, shift
to exploratory testing as the core
functions are working, and then
begin introducing real users as
the exploratory testing shows an
acceptable level of usability.

#

What Is Exploratory Testing?
Real exploratory testing is not the
same as ad hoc testing; it’s much
more sophisticated and organized
than that. The term was originally
coined by Kem Caner in his book,
Testing Computer Software, to
describe an alternative approach
to traditional formal planning. He
implored testers to “Trust your
instincts.” But he also warned that
you should “always write down
what you do and what happens
when you run exploratory tests.”

Another author, James Bach,
described exploratory testing
as “scientific thinking in real-
time.” In his 1999 paper, General
Functionality and Stability Test
Procedure, Bach expounded on
that, explaining that “unlike
traditional informal testing, this
procedure consists of specific

tasks, objectives, and deliverables
that make it a systematic
process…” and went on to say,
“In operational terms, exploratory
testing is an interactive process
of concurrent product exploration,
test design, and test execution.
The outcome of an exploratory
testing session is a set of notes
about the product, failures found,
and a concise record of how
the product was tested. When
practiced by trained testers, it
yields consistently valuable and
auditable results.”

More than a decade has passed
since Bach wrote those lines,
yet his wisdom is still lost on
many people.

The Surprising Truth About
Exploratory Testing

Exploratory testing is an important tool in any experienced tester’s kit.
In the modern age of Agile development, with software being updated
and released faster than ever, exploratory testing is nothing short of
essential. The trouble is that there seems to be some confusion over
what the term actually means.

Vu Lam

CHAPTER 3

QA Symphony | The Surprising Truth about Exploratory Testing | Page 9

When To Employ It
It’s very common for testers to be
under time pressure, and the shift
to Agile methodology in software
development has had a tangible
impact on documentation. To put it
simply: testers have very little time
to test a new build and must often
do so without access to detailed
documentation.

Exploratory testing is ideal for
this scenario, but should not
be an exclusive approach. It
complements scripted testing
activities. Exploratory testing
is simply part of an overall plan
that must include new feature
exploration, bug validation and
regression testing.

If you’re not sure what to test next,
or you want to dig deeper into a
complex piece of software, then it’s
time for some exploratory testing.

How To Do It Right
What you’re really looking to do
is design and execute tests at the
same time. Although you won’t
be using requirements to prepare
detailed test cases before you begin,
that doesn’t mean you should test
randomly. There should be a focus
on specific parts of the product, or
an agreement to employ specific
strategies during the testing.
Combine your intuition with the
knowledge you have amassed on
the software from previous tests,
and your perceptions about the
needs of the end user. You must
understand what the software
is supposed to do. Then you can
appreciate how developers tried
to solve specific problems and
decide whether they accomplished
their objectives. By leveraging
your insight and targeting your
exploration, new issues will be
discovered. This is not a random
bug hunt.

Good testers will naturally
develop the skills required for
exploratory testing; the ability
to think creatively and generate
useful tests in real-time. A dogged,
rigid approach to testing software,
especially software that is rapidly
evolving, does not make the best
use of a tester’s intellect, and
won’t result in the best final
product possible.

Extracting Value
You’ve established your
boundaries and the scope of your
testing session upfront. In order
to get the maximum benefit from
your discoveries you have to
generate reports of your findings.

You should be recording your
expectations and the actual results.
Were you able to achieve your goal?
Did it take longer than expected?
Did you encounter weaknesses
in the software? Remember that
another tester, or a member of
the development team, should be
able to follow your thoughts and
reasoning. Clarity is vital.

Because you have a frame of
context the data you generate
can really benefit the develop-
ment team. Instead of the
isolated defects, suggestions, and
concerns that an ad hoc testing
approach might generate, you get
in-depth information on how well
the software meets intended goals
and how it will be perceived by
the end user.

In addition to verifying software
and discovering issues,
exploratory testing can help
identify useful test cases for future
regression testing. An exploratory
testing session can be the bridge
between unscripted and scripted
testing for your project.

The Right Approach
The surprising truth is that
exploratory testing encourages
the right approach to testing any
software. You need to build a real
insight into the product and think
imaginatively about how it will be
used. Combine that creativity with
metrics and detailed reporting, and
you can see the big picture. Unlike
ad hoc testing, exploratory testing
is an organized, well-structured
approach that lets testers excel
in the ever changing landscape
of agile development.

#

“Why” is a higher level overview
that really ties into the business
side. It’s the big picture thinking
that reveals why you’re building
the software in the first place.
What audience need is your
product fulfilling? For example,
we need to build an e-commerce
website to sell our product to the
general public.

“What” is really focused on
individual features or functions
of a system. Using a shopping
cart analogy for an ecommerce
website, you might say that users

How Do You Build Good Tests?
You can’t design or execute the
right tests without understanding
the intended purpose of the system.
Testers need to have an insight
into the end user’s expectations.
Communication between the
product people at the business end,
the engineers working on the code,
and the test department enables
you to score tests in terms of their
importance and work out where
each test cycle should be focusing.

We can break it down into three
simple queries: why, what, and how.

must be able to add and remove
items from their shopping cart, or
that they shouldn’t be able to add
something that’s out of stock.

“How” relates to the practical
application of your testing. How
exactly is the software going to
be tested? How is the success and
failure measured?

Good tests are always going to
cover our trio, but it can be a useful
exercise to break things down.

Building Good Tests:
Why, What, How?

Tests are an investment in the quality of any given system. There’s always a cost
to build, run, and maintain each test in terms of time and resources. There’s also
a great deal of value to be extracted from running the right test at the right time.
It’s important to remember that for everything you do test, there’s something
else you’re not testing as a result.

Understanding that some tests are more important than others is vital to
creating a useful and fluid test plan capable of catering for modern software
development techniques. Traditional waterfall development -- where everything
is delivered for a specific release date in a finished package -- has been
succeeded by continuous feature roll outs into live systems. This necessitates
a different approach from QA departments.

Good testers and good tests always retain and use an awareness
of what the intended audience wants and expects.

Sellers Smith

CHAPTER 4

QA Symphony | Building Good Tests: Why, What, How? | Page 11

The Why
If you get too caught up in the “what” and the
“how” it’s possible to miss the “why” completely
and it’s the most important element because it
dictates that some tests are more important than
others. The business case for developing your
software in the first place has to remain front
and center throughout the project. If you begin to
lose sight of what the end user needs, then you
could be focusing your efforts in the wrong places.
Delivering value to your customers is critical. Good
testers and good tests always retain and use an
awareness of what the intended audience wants
and expects.

One technique we can employ is risk-based
analysis of tasks. With risk-based analysis, we
can arrive at a numerical value for each test
which gives you a sense of its importance.
We can assign a score of between 1 and
9 to each test. At the top end, a score of
9 would be a critical test, and at the
other end of the spectrum, a score
of 1 might indicate a test that only
needs to be used sparingly.

The value is determined by multiplying two factors:
• Impact to the user – what are they trying to

accomplish and what would the impact be if they
couldn’t? How critical is this action?

• Probability of failure – how likely is it that this code
will fail? This is heavily influenced by how new it is
and how much testing it has already undergone.

If we return to our ecommerce website analogy then
we could take the action of being able to buy goods,
clearly that’s essential, so it would be assigned a 3.
However, the functionality for adding goods to the
basket and checking out has been there since day
one, so it has already been tested quite extensively,

but some new features have been added which could
impact on that code, so that might result in a score

of 2. Multiply the two together and you’ve got a
6. This figure will change over time, because

probability of failure will go up if this part of
the system is significantly altered, and it

will go down over time if it isn’t. There’s
also a discretionary factor that might

lead you to bump that 6 up to a 7 if you
feel it’s merited.

The What
Testers come up with specific scenarios of how an
end user might interact with the software and what
their expected outcome would be. A typical test may
consist of many steps detailed in a script, but this
approach can cause problems. What if a new tester
comes in to run the test? Is the intent of the test clear
to them? What if the implementation of the feature
changes? Perhaps the steps no longer result in the
expected outcome and the test fails, but that doesn’t
necessarily mean that the software is not working
as intended.

The steps and scripts are delving into the “how,” but if
the “what” is distinct from the “how” then there’s less
chance of erroneous failure. Allow the tester some
room for an exploratory approach and you’re likely to
get better results. If something can be tightly scripted,
and you expect it to be a part of your regression
testing, then there’s an argument for looking at
automating it.

Adopting a technique like Specification by Example
or Behavior Driven Design, you’re going to lay each
test out in this format:
• Given certain preconditions
• When one or more actions happen
• Then you should get this outcome

Regardless of the specifics of the user interface, or
the stops along the way between A and Z, the “Given,
When, Then” format covers the essential core of the
scenario and ensures that the feature does what
it’s intended to do, without necessarily spelling out
exactly how it should do it. It can be used to generate
tables of scenarios which describe the actions,
variables, and outcomes to test.

(Continued on next page)

The How
Getting down to the nuts and bolts of how testers will create, document,
and run tests, we come to the “how.” Since projects are more fluid now and
requirements or priorities can change on a daily basis, there needs to be
some flexibility in the “how” and a willingness to continually reassess the
worth of individual tests. Finding the right balance between automated
tests, manually scripted tests, and exploratory testing is an ongoing
challenge that’s driven by the “what” and the “why.”

Traditionally, manual tests have been fully documented as a sequence
of steps with an expected result for each step, but this is time consuming
and difficult to maintain. It’s possible to borrow from automation by
plugging in higher level actions, or keywords, which refer to a detailed
script or a common business action that’s understood by the tester.
There’s also been a move towards exploratory testing, where the intent
of the test is defined, but the steps are dynamic. Finally, there’s a place
for disposable testing, where you might use a recording tool to quickly
document each step in a manual test as you work through it. These tests
will need to be redone if anything changes, but as it’s a relatively quick
process, and you’re actually testing while you create the test, that’s not
necessarily a problem.

Continuous assessment
Each individual test should be viewed as an investment. You have to
decide whether to run it, whether it needs to be maintained, or if it’s time
to drop it. You need to continually assess the value and the cost of each
test, so that you get maximum value from each test cycle. Never lose
sight of the business requirements. When a test fails, ask yourself if it’s a
problem with the system or a problem with the test, and make sure that
you always listen to the business people, the software engineers, and most
importantly the customer.

#

Building Good Tests: Why, What, How?
(Continued from pg. 11)

Conclusion

Every decade or so, we see a radical new idea or
technology emerging that completely changes the
software development scene, and moves the goalposts for
testers. A trio of trends, in the shape of cloud computing,
Agile development methodology, and the explosion in
mobile devices, have converged to give us software that
is put together quickly and made available cheaply.
Drastically cutting the time from concept to market has
a big impact on the way software is tested and a big
impact on testers.

The waterfall method necessitated meticulous planning
from detailed requirements, and a linear development
schedule that dictated testing should follow the design
and implementation phases. It’s hopelessly outdated.

We are in the midst of this transformative period
and if you find that you’re struggling, then it’s time to
realize why. You need to catch up on what is changing,
understand how you can be a better tester, and adopt new
techniques and tools that will help you to be as valuable
as possible to your company.

It’s not a level playing field. There are lots of conferences
for developers, plenty of networking opportunities,
magazines and online articles sharing new ideas. There’s
a whole community that targets developers with new
tools and products, a community that’s geared towards
getting developers up to speed on new languages or
methodologies. Unfortunately, the support offered to
developers does not match or exist on the same scale
for testers.

Too many testers have their heads down, working away
on their own projects. There’s a lack of appetite for
forum discussions, conferences, or new techniques. This
lack of a community evangelizing new procedures and
spreading new ideas, makes it that much harder for best
practices and exciting techniques to spread. The field is
relatively slow to modernize. New trends are in motion,
and there are QA professionals pressing for change, but
many testers unfortunately are not aware it.

In order to spark the same level of activity and
even controversy in testing that we see in software
development, we need to work together to drive the craft
to become more professionalized. Generally speaking,
testing roles may not be valued in the same way that
developer roles are, but we can push to change that.
Seasoned testing professionals can act as advocates for
that change, open lines of communication, and agitate
for the whole community to pull together.

The testing profession should move to an expertise
value base, focus on improving skills and knowledge
to create better career paths and ultimately take greater
satisfaction and pride in the important work it does.
Finding the right blend of techniques and tools,
the perfect marriage of process and function cannot
be achieved if we can’t get beyond testing as
an afterthought, or an addendum to development.

It’s time to reevaluate how we approach testing. Consider
tools that have been designed specifically to meet the
needs of real testers in the field, and blend techniques
that are capable of providing the speed, transparency and
flexibility that modern software development demands.
Our comprehensive test management solution, qTest,
was designed to empower modern QA departments with
the features and functionality they demand. We also
offer qSnap, a completely free, cross-browser snapshot
tool that enables testers to capture screenshots, edit,
annotate, and share them directly. We welcome your
input and feedback as we strive to produce tools that
put testers first.

We hope you found this eBook useful and welcome your
comments and input. We hope to foster a greater spirit of
community across the testing profession.

#

http://www.qasymphony.com

Email: info@qasymphony.com

Phone: 1-888-723-8654

Web: www.qasymphony.com

Join the conversation!

For more information on
QASymphony please contact us at:

http://www.qasymphony.com
http://facebook.com/qasymphony
http://twitter.com/qasymphony
http://linkedin.com/company/qasymphony
mailto:info@qasymphony.com
http://www.qasymphony.com

	Button 4:
	Button 5:
	Button 6:
	Button 7:
	Button 9:
	Button 11:
	Button 12:
	Button 13:
	Button 16:
	Button 17:
	Button 14:
	Button 15:

